Best of ASCO - 2014 Annual Meeting

 

Welcome

Attend this session at the
2019 ASCO Annual Meeting!


Session: Lung Cancer—Non-Small Cell Metastatic

Type: Poster Session

Time: Sunday June 2, 8:00 AM to 11:00 AM

Location: Hall A

Deep learning-based predictive biomarker for immune checkpoint inhibitor response in metastatic non-small cell lung cancer.

Sub-category:
Metastatic Non-Small Cell Lung Cancer

Category:
Lung Cancer—Non-Small Cell Metastatic

Meeting:
2019 ASCO Annual Meeting

Abstract No:
9094

Poster Board Number:
Poster Session (Board #417)

Citation:
J Clin Oncol 37, 2019 (suppl; abstr 9094)

Author(s): Sehhoon Park, Chang Ho Ahn, Geunyoung Jung, Sarah Lee, Kyunghyun Paeng, Jiwon Shin, Inwan Yoo, Hyun Ae Jung, Jong-Mu Sun, Jin Seok Ahn, Myung-Ju Ahn, Keunchil Park, Yoon La Choi, Sang-Yong Song, Se-Hoon Lee; Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea; Lunit Inc., Seoul, South Korea; Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea; Department of Pathology, Samsung Medical Centre, Sungkyunkwan University, Seoul, South Korea; Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea

Abstract Disclosures

Abstract:

Background: In the era of immunotherapy, immune checkpoint inhibitor (ICI) has changed the treatment paradigm in metastatic non-small cell lung cancer (NSCLC). Along with clinical trials, there is an ongoing investigation to discover the predictive biomarker of ICI which so far has unsatisfactory reliability. As an effort to enhance the predictive value of ICI treatment, we applied deep learning and developed artificial intelligent (AI) score (range from 0 to 1) to analyze the specific context of immune-tumor microenvironment (TME) extracted by scanned images from H&E slides. Methods: As a ground work, deep learning-based H&E image analyzer, Lunit SCOPE, has been trained with H&E images (n = 1824) from ICI naive NSCLC samples. For the calculation of AI score, training was conducted using responder/non-responder labeled ICI treated samples from the exploratory cohort. The ICI responder was defined as the patient with a best overall response of partial or complete response and stable disease for more than 6 months. The positivity of PD-L1 immunohistochemistry (IHC) was assessed manually by pathologists. Results: The exploratory cohort is composed of NSCLC patients treated with ICI (n = 189) in Samsung Medical Center, and response to ICI was observed in 72 (38.1%) patients. Median follow-up duration was 6.8 months (6.6~8.2). Samples with PD-L1 IHC positive, defined by ≥ 1%, was observed in 138 (73.0%) patients. AI score was significant higher in the responder group (median: 0.391 vs 0.205, P = 6.14e-5), and the patients with AI score above the cut-off (0.337) showed a better response to ICI (odds ratio [OR] 3.47 P = 7.34e-5) which is higher than patients with PD-L1 ≥ 1% (OR 1.92, P = 0.069). High AI score group (n = 83) showed significantly favorable PFS compared to low AI score group (n = 106, median PFS: 5.1m vs 1.9m, hazard ratio [HR] 0.51, P = 9.6e-5) and this outcome was independent with PD-L1 status (P = 6.0e-5). In subgroup analysis, PFS of PD-L1 high / AI score high group (n = 63) had longer median PFS (6.7m) compared to both PD-L1 high / AI score low group (n = 70, 4.0m, P = 0.001) and PD-L1 low/AI score low group (n = 35, 1.9m, P = 4.0e-6). Tumor infiltrating lymphocyte (TIL) density of cancer epithelium was significantly correlated with AI score (Pearson’s r = 0.310, P = 1.43e-5), which suggests that AI score may partly reflect TME represented by TIL. Conclusions: The AI score by machine-learned information, extracted from H&E images without additional IHC stain, could predict responsiveness and PFS of ICI treatment independent of PD-L1 IHC positivity.

 
Other Abstracts in this Sub-Category:

 

1. Association of STK11/LKB1 genomic alterations with lack of benefit from the addition of pembrolizumab to platinum doublet chemotherapy in non-squamous non-small cell lung cancer.

Meeting: 2019 ASCO Annual Meeting Abstract No: 102 First Author: Ferdinandos Skoulidis
Category: Lung Cancer—Non-Small Cell Metastatic - Metastatic Non-Small Cell Lung Cancer

 

2. Real-world outcomes of patients with advanced non-small cell lung cancer (aNSCLC) and autoimmune disease (AD) receiving immune checkpoint inhibitors (ICIs).

Meeting: 2019 ASCO Annual Meeting Abstract No: 110 First Author: Sean Khozin
Category: Lung Cancer—Non-Small Cell Metastatic - Metastatic Non-Small Cell Lung Cancer

 

3. RELAY: A multinational, double-blind, randomized Phase 3 study of erlotinib (ERL) in combination with ramucirumab (RAM) or placebo (PL) in previously untreated patients with epidermal growth factor receptor mutation-positive (EGFRm) metastatic non-small cell lung cancer (NSCLC).

Meeting: 2019 ASCO Annual Meeting Abstract No: 9000 First Author: Kazuhiko Nakagawa
Category: Lung Cancer—Non-Small Cell Metastatic - Metastatic Non-Small Cell Lung Cancer

 

More...